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Figure 8.1 The tree-like branch patterns in this clear Plexiglas® block are known as a Lichtenberg figure, named for the
German physicist Georg Christof Lichtenberg (1742–1799), who was the first to study these patterns. The “branches” are created
by the dielectric breakdown produced by a strong electric field. (credit: modification of work by Bert Hickman)
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Introduction
Capacitors are important components of electrical circuits in many electronic devices, including pacemakers, cell phones,
and computers. In this chapter, we study their properties, and, over the next few chapters, we examine their function in
combination with other circuit elements. By themselves, capacitors are often used to store electrical energy and release it
when needed; with other circuit components, capacitors often act as part of a filter that allows some electrical signals to pass
while blocking others. You can see why capacitors are considered one of the fundamental components of electrical circuits.
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Learning Objectives

By the end of this section, you will be able to:

• Explain the concepts of a capacitor and its capacitance

• Describe how to evaluate the capacitance of a system of conductors

A capacitor is a device used to store electrical charge and electrical energy. It consists of at least two electrical conductors
separated by a distance. (Note that such electrical conductors are sometimes referred to as “electrodes,” but more correctly,

Chapter 8 | Capacitance 345



they are “capacitor plates.”) The space between capacitors may simply be a vacuum, and, in that case, a capacitor is then
known as a “vacuum capacitor.” However, the space is usually filled with an insulating material known as a dielectric. (You
will learn more about dielectrics in the sections on dielectrics later in this chapter.) The amount of storage in a capacitor is
determined by a property called capacitance, which you will learn more about a bit later in this section.

Capacitors have applications ranging from filtering static from radio reception to energy storage in heart defibrillators.
Typically, commercial capacitors have two conducting parts close to one another but not touching, such as those in Figure
8.2. Most of the time, a dielectric is used between the two plates. When battery terminals are connected to an initially
uncharged capacitor, the battery potential moves a small amount of charge of magnitude Q from the positive plate to the
negative plate. The capacitor remains neutral overall, but with charges +Q and −Q residing on opposite plates.

Figure 8.2 Both capacitors shown here were initially uncharged before being
connected to a battery. They now have charges of +Q and −Q (respectively) on

their plates. (a) A parallel-plate capacitor consists of two plates of opposite charge
with area A separated by distance d. (b) A rolled capacitor has a dielectric material
between its two conducting sheets (plates).

A system composed of two identical parallel-conducting plates separated by a distance is called a parallel-plate capacitor
(Figure 8.3). The magnitude of the electrical field in the space between the parallel plates is E = σ/ε0 , where σ denotes

the surface charge density on one plate (recall that σ is the charge Q per the surface area A). Thus, the magnitude of the

field is directly proportional to Q.
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Figure 8.3 The charge separation in a capacitor shows that the
charges remain on the surfaces of the capacitor plates. Electrical
field lines in a parallel-plate capacitor begin with positive
charges and end with negative charges. The magnitude of the
electrical field in the space between the plates is in direct
proportion to the amount of charge on the capacitor.

Capacitors with different physical characteristics (such as shape and size of their plates) store different amounts of charge
for the same applied voltage V across their plates. The capacitance C of a capacitor is defined as the ratio of the maximum
charge Q that can be stored in a capacitor to the applied voltage V across its plates. In other words, capacitance is the largest
amount of charge per volt that can be stored on the device:

(8.1)C = Q
V .

The SI unit of capacitance is the farad (F), named after Michael Faraday (1791–1867). Since capacitance is the charge per
unit voltage, one farad is one coulomb per one volt, or

1 F = 1C
1V.

By definition, a 1.0-F capacitor is able to store 1.0 C of charge (a very large amount of charge) when the potential
difference between its plates is only 1.0 V. One farad is therefore a very large capacitance. Typical capacitance values range

from picofarads (1 pF = 10−12 F) to millifarads (1 mF = 10−3 F) , which also includes microfarads ( 1 µF = 10−6 F ).

Capacitors can be produced in various shapes and sizes (Figure 8.4).
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Figure 8.4 These are some typical capacitors used in
electronic devices. A capacitor’s size is not necessarily related to
its capacitance value. (credit: Windell Oskay)

Calculation of Capacitance
We can calculate the capacitance of a pair of conductors with the standard approach that follows.

Problem-Solving Strategy: Calculating Capacitance

1. Assume that the capacitor has a charge Q.

2. Determine the electrical field E→ between the conductors. If symmetry is present in the arrangement of

conductors, you may be able to use Gauss’s law for this calculation.

3. Find the potential difference between the conductors from

(8.2)
VB − VA = −∫

A

B
E→ · d l→ ,

where the path of integration leads from one conductor to the other. The magnitude of the potential difference
is then V = |VB − VA| .

4. With V known, obtain the capacitance directly from Equation 8.1.

To show how this procedure works, we now calculate the capacitances of parallel-plate, spherical, and cylindrical
capacitors. In all cases, we assume vacuum capacitors (empty capacitors) with no dielectric substance in the space between
conductors.

Parallel-Plate Capacitor
The parallel-plate capacitor (Figure 8.5) has two identical conducting plates, each having a surface area A, separated by a
distance d. When a voltage V is applied to the capacitor, it stores a charge Q, as shown. We can see how its capacitance may
depend on A and d by considering characteristics of the Coulomb force. We know that force between the charges increases
with charge values and decreases with the distance between them. We should expect that the bigger the plates are, the more
charge they can store. Thus, C should be greater for a larger value of A. Similarly, the closer the plates are together, the
greater the attraction of the opposite charges on them. Therefore, C should be greater for a smaller d.
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Figure 8.5 In a parallel-plate capacitor with plates separated
by a distance d, each plate has the same surface area A.

We define the surface charge density σ on the plates as

σ = Q
A .

We know from previous chapters that when d is small, the electrical field between the plates is fairly uniform (ignoring edge
effects) and that its magnitude is given by

E = σ
ε0

,

where the constant ε0 is the permittivity of free space, ε0 = 8.85 × 10−12 F/m. The SI unit of F/m is equivalent to

C2 /N · m2. Since the electrical field E→ between the plates is uniform, the potential difference between the plates is

V = Ed = σd
ε0

= Qd
ε0 A.

Therefore Equation 8.1 gives the capacitance of a parallel-plate capacitor as

(8.3)C = Q
V = Q

Qd/ε0A = ε0
A
d .

Notice from this equation that capacitance is a function only of the geometry and what material fills the space between the
plates (in this case, vacuum) of this capacitor. In fact, this is true not only for a parallel-plate capacitor, but for all capacitors:
The capacitance is independent of Q or V. If the charge changes, the potential changes correspondingly so that Q/V remains
constant.
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8.1

8.2

Example 8.1

Capacitance and Charge Stored in a Parallel-Plate Capacitor

(a) What is the capacitance of an empty parallel-plate capacitor with metal plates that each have an area of

1.00 m2 , separated by 1.00 mm? (b) How much charge is stored in this capacitor if a voltage of 3.00 × 103 V
is applied to it?

Strategy

Finding the capacitance C is a straightforward application of Equation 8.3. Once we find C, we can find the
charge stored by using Equation 8.1.

Solution
a. Entering the given values into Equation 8.3 yields

C = ε0
A
d = ⎛

⎝8.85 × 10−12 F
m

⎞
⎠

1.00 m2

1.00 × 10−3 m
= 8.85 × 10−9 F = 8.85 nF.

This small capacitance value indicates how difficult it is to make a device with a large capacitance.

b. Inverting Equation 8.1 and entering the known values into this equation gives

Q = CV = (8.85 × 10−9 F)(3.00 × 103 V) = 26.6 µC.

Significance

This charge is only slightly greater than those found in typical static electricity applications. Since air breaks
down (becomes conductive) at an electrical field strength of about 3.0 MV/m, no more charge can be stored on
this capacitor by increasing the voltage.

Example 8.2

A 1-F Parallel-Plate Capacitor

Suppose you wish to construct a parallel-plate capacitor with a capacitance of 1.0 F. What area must you use for
each plate if the plates are separated by 1.0 mm?

Solution

Rearranging Equation 8.3, we obtain

A = Cd
ε0

= (1.0 F)(1.0 × 10−3 m)
8.85 × 10−12 F/m

= 1.1 × 108 m2.

Each square plate would have to be 10 km across. It used to be a common prank to ask a student to go to the
laboratory stockroom and request a 1-F parallel-plate capacitor, until stockroom attendants got tired of the joke.

Check Your Understanding The capacitance of a parallel-plate capacitor is 2.0 pF. If the area of each

plate is 2.4 cm2 , what is the plate separation?

Check Your Understanding Verify that σ/V and ε0/d have the same physical units.

Spherical Capacitor
A spherical capacitor is another set of conductors whose capacitance can be easily determined (Figure 8.6). It consists of
two concentric conducting spherical shells of radii R1 (inner shell) and R2 (outer shell). The shells are given equal and
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opposite charges +Q and −Q , respectively. From symmetry, the electrical field between the shells is directed radially

outward. We can obtain the magnitude of the field by applying Gauss’s law over a spherical Gaussian surface of radius r
concentric with the shells. The enclosed charge is +Q ; therefore we have

∮
S

E→ · n̂dA = E(4πr2) = Q
ε0

.

Thus, the electrical field between the conductors is

E→ = 1
4πε0

Q
r2 r̂ .

We substitute this E→ into Equation 8.2 and integrate along a radial path between the shells:

V = ∫
R1

R2
E→ · d l→ = ⌠

⌡R1

R2⎛
⎝

1
4πε0

Q
r2 r̂ ⎞

⎠ · ( r̂  dr) = Q
4πε0

⌠
⌡R1

R2
dr
r2 = Q

4πε0

⎛
⎝

1
R1

− 1
R2

⎞
⎠.

In this equation, the potential difference between the plates is V = −(V2 − V1) = V1 − V2 . We substitute this result into

Equation 8.1 to find the capacitance of a spherical capacitor:

(8.4)C = Q
V = 4πε0

R1 R2
R2 − R1

.

Figure 8.6 A spherical capacitor consists of two concentric
conducting spheres. Note that the charges on a conductor reside
on its surface.

Example 8.3

Capacitance of an Isolated Sphere

Calculate the capacitance of a single isolated conducting sphere of radius R1 and compare it with Equation 8.4

in the limit as R2 → ∞ .

Strategy

We assume that the charge on the sphere is Q, and so we follow the four steps outlined earlier. We also assume
the other conductor to be a concentric hollow sphere of infinite radius.
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8.3

Solution

On the outside of an isolated conducting sphere, the electrical field is given by Equation 8.2. The magnitude of
the potential difference between the surface of an isolated sphere and infinity is

V = ∫
R1

+∞
E→ · d l→ = Q

4πε0
⌠
⌡R1

+∞
1
r2 r̂ · ( r̂ dr) = Q

4πε0
⌠
⌡R1

+∞
dr
r2 = 1

4πε0

Q
R1

.

The capacitance of an isolated sphere is therefore

C = Q
V = Q4πε0 R1

Q = 4πε0 R1.

Significance

The same result can be obtained by taking the limit of Equation 8.4 as R2 → ∞ . A single isolated sphere is

therefore equivalent to a spherical capacitor whose outer shell has an infinitely large radius.

Check Your Understanding The radius of the outer sphere of a spherical capacitor is five times the
radius of its inner shell. What are the dimensions of this capacitor if its capacitance is 5.00 pF?

Cylindrical Capacitor
A cylindrical capacitor consists of two concentric, conducting cylinders (Figure 8.7). The inner cylinder, of radius R1 ,

may either be a shell or be completely solid. The outer cylinder is a shell of inner radius R2 . We assume that the length of

each cylinder is l and that the excess charges +Q and −Q reside on the inner and outer cylinders, respectively.

Figure 8.7 A cylindrical capacitor consists of two concentric, conducting cylinders. Here, the charge
on the outer surface of the inner cylinder is positive (indicated by + ) and the charge on the inner

surface of the outer cylinder is negative (indicated by − ).

With edge effects ignored, the electrical field between the conductors is directed radially outward from the common axis of
the cylinders. Using the Gaussian surface shown in Figure 8.7, we have

∮
S

E→ · n̂ dA = E(2πrl) = Q
ε0

.

Therefore, the electrical field between the cylinders is

352 Chapter 8 | Capacitance

This OpenStax book is available for free at http://cnx.org/content/col12074/1.9



8.4

(8.5)E→ = 1
2πε0

Q
r l r̂ .

Here r̂ is the unit radial vector along the radius of the cylinder. We can substitute into Equation 8.2 and find the potential

difference between the cylinders:

V = ∫
R1

R2
E→ · d l→ p = Q

2πε0 l∫R1

R21
r r̂ · ( r̂ dr) = Q

2πε0 l∫R1

R2dr
r = Q

2πε0 llnr|R1
R2 = Q

2πε0 lln
R2
R1

.

Thus, the capacitance of a cylindrical capacitor is

(8.6)C = Q
V = 2πε0 l

ln(R2/R1).

As in other cases, this capacitance depends only on the geometry of the conductor arrangement. An important application
of Equation 8.6 is the determination of the capacitance per unit length of a coaxial cable, which is commonly used to
transmit time-varying electrical signals. A coaxial cable consists of two concentric, cylindrical conductors separated by an
insulating material. (Here, we assume a vacuum between the conductors, but the physics is qualitatively almost the same
when the space between the conductors is filled by a dielectric.) This configuration shields the electrical signal propagating
down the inner conductor from stray electrical fields external to the cable. Current flows in opposite directions in the inner
and the outer conductors, with the outer conductor usually grounded. Now, from Equation 8.6, the capacitance per unit
length of the coaxial cable is given by

C
l = 2πε0

ln(R2/R1).

In practical applications, it is important to select specific values of C/l. This can be accomplished with appropriate choices
of radii of the conductors and of the insulating material between them.

Check Your Understanding When a cylindrical capacitor is given a charge of 0.500 nC, a potential
difference of 20.0 V is measured between the cylinders. (a) What is the capacitance of this system? (b) If the
cylinders are 1.0 m long, what is the ratio of their radii?

Several types of practical capacitors are shown in Figure 8.4. Common capacitors are often made of two small pieces of
metal foil separated by two small pieces of insulation (see Figure 8.2(b)). The metal foil and insulation are encased in a
protective coating, and two metal leads are used for connecting the foils to an external circuit. Some common insulating
materials are mica, ceramic, paper, and Teflon™ non-stick coating.

Another popular type of capacitor is an electrolytic capacitor. It consists of an oxidized metal in a conducting paste.
The main advantage of an electrolytic capacitor is its high capacitance relative to other common types of capacitors. For
example, capacitance of one type of aluminum electrolytic capacitor can be as high as 1.0 F. However, you must be careful
when using an electrolytic capacitor in a circuit, because it only functions correctly when the metal foil is at a higher
potential than the conducting paste. When reverse polarization occurs, electrolytic action destroys the oxide film. This type
of capacitor cannot be connected across an alternating current source, because half of the time, ac voltage would have the
wrong polarity, as an alternating current reverses its polarity (see Alternating-Current Circuts on alternating-current
circuits).

A variable air capacitor (Figure 8.8) has two sets of parallel plates. One set of plates is fixed (indicated as “stator”), and
the other set of plates is attached to a shaft that can be rotated (indicated as “rotor”). By turning the shaft, the cross-sectional
area in the overlap of the plates can be changed; therefore, the capacitance of this system can be tuned to a desired value.
Capacitor tuning has applications in any type of radio transmission and in receiving radio signals from electronic devices.
Any time you tune your car radio to your favorite station, think of capacitance.
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Figure 8.8 In a variable air capacitor, capacitance can be tuned by changing the effective area
of the plates. (credit: modification of work by Robbie Sproule)

The symbols shown in Figure 8.9 are circuit representations of various types of capacitors. We generally use the symbol
shown in Figure 8.9(a). The symbol in Figure 8.9(c) represents a variable-capacitance capacitor. Notice the similarity of
these symbols to the symmetry of a parallel-plate capacitor. An electrolytic capacitor is represented by the symbol in part
Figure 8.9(b), where the curved plate indicates the negative terminal.

Figure 8.9 This shows three different circuit representations
of capacitors. The symbol in (a) is the most commonly used one.
The symbol in (b) represents an electrolytic capacitor. The
symbol in (c) represents a variable-capacitance capacitor.

An interesting applied example of a capacitor model comes from cell biology and deals with the electrical potential in the
plasma membrane of a living cell (Figure 8.10). Cell membranes separate cells from their surroundings but allow some
selected ions to pass in or out of the cell. The potential difference across a membrane is about 70 mV. The cell membrane
may be 7 to 10 nm thick. Treating the cell membrane as a nano-sized capacitor, the estimate of the smallest electrical field

strength across its ‘plates’ yields the value E = V
d = 70 × 10−3 V

10 × 10−9 m
= 7 × 106 V/m > 3 MV/m .

This magnitude of electrical field is great enough to create an electrical spark in the air.
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Figure 8.10 The semipermeable membrane of a biological cell has different
concentrations of ions on its interior surface than on its exterior. Diffusion moves

the K+ (potassium) and Cl– (chloride) ions in the directions shown, until the

Coulomb force halts further transfer. In this way, the exterior of the membrane
acquires a positive charge and its interior surface acquires a negative charge,
creating a potential difference across the membrane. The membrane is normally
impermeable to Na+ (sodium ions).

Visit the PhET Explorations: Capacitor Lab (https://openstaxcollege.org/l/21phetcapacitor) to
explore how a capacitor works. Change the size of the plates and add a dielectric to see the effect on capacitance.
Change the voltage and see charges built up on the plates. Observe the electrical field in the capacitor. Measure the
voltage and the electrical field.

8.2 | Capacitors in Series and in Parallel

Learning Objectives

By the end of this section, you will be able to:

• Explain how to determine the equivalent capacitance of capacitors in series and in parallel
combinations

• Compute the potential difference across the plates and the charge on the plates for a capacitor
in a network and determine the net capacitance of a network of capacitors

Several capacitors can be connected together to be used in a variety of applications. Multiple connections of capacitors
behave as a single equivalent capacitor. The total capacitance of this equivalent single capacitor depends both on the
individual capacitors and how they are connected. Capacitors can be arranged in two simple and common types of
connections, known as series and parallel, for which we can easily calculate the total capacitance. These two basic
combinations, series and parallel, can also be used as part of more complex connections.

The Series Combination of Capacitors
Figure 8.11 illustrates a series combination of three capacitors, arranged in a row within the circuit. As for any capacitor,
the capacitance of the combination is related to the charge and voltage by using Equation 8.1. When this series
combination is connected to a battery with voltage V, each of the capacitors acquires an identical charge Q. To explain,
first note that the charge on the plate connected to the positive terminal of the battery is +Q and the charge on the plate

connected to the negative terminal is −Q . Charges are then induced on the other plates so that the sum of the charges on

all plates, and the sum of charges on any pair of capacitor plates, is zero. However, the potential drop V1 = Q/C1 on one
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